منابع مشابه
Nonconvex Minimization Problems
I. The central result. The grandfather of it all is the celebrated 1961 theorem of Bishop and Phelps (see [7], [8]) that the set of continuous linear functionals on a Banach space E which attain their maximum on a prescribed closed convex bounded subset X c E is norm-dense in £*. The crux of the proof lies in introducing a certain convex cone in E, associating with it a partial ordering, and ap...
متن کاملl-Penalized Minimization Problems
Most of the inverse problems arising in applied electromagnetics come from an underdetermined direct problem, this is the case, for instance, of spatial resolution enhancement. This implies that no unique inverse operator exists; therefore, additional constraints must be imposed on the sought solution. When dealing with microwave remote sensing, among the possible choices, the minimum p–norm co...
متن کاملOn the duality of quadratic minimization problems using pseudo inverses
In this paper we consider the minimization of a positive semidefinite quadratic form, having a singular corresponding matrix $H$. We state the dual formulation of the original problem and treat both problems only using the vectors $x in mathcal{N}(H)^perp$ instead of the classical approach of convex optimization techniques such as the null space method. Given this approach and based on t...
متن کاملAlgorithms for Approximating Minimization Problems
In this paper, we study the following minimization problem
متن کاملL∞ minimization in geometric reconstruction problems
We investigate the use of the L∞ cost function in geometric vision problems. This cost function measures the maximum of a set of model-fitting errors, rather than the sumof-squares, or L2 cost function that is commonly used (in least-squares fitting). We investigate its use in two problems; multiview triangulation and motion recovery from omnidirectional cameras, though the results may also app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1981
ISSN: 0022-1236
DOI: 10.1016/0022-1236(81)90089-6